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A full spectral model for the stream-function-vorticity formulation is
developed for the solution of unsteady flow past a rigid sphere. To
convert the governing partial differential equations to discrete form,
Chebyshev and Legendre polynomials are employed to expand the vor-
ticity and stream function in the radial and angular directions, respec-
tively, together with a first-arder, fully implicit, iterative scheme for time
advancement. The solution to the system of discrete nonlinear equa-
tions is accomplished by LU decomposition in conjunction with the
influence matrix to resolve the lack of vorticity boundary conditions.
Owing to the global nature of the orthogonal trial functions, the present
technique provides a means to achieve highly accurate results with less
number of unknowns than either traditional finite difference or finite
element methods. Comparisons of numerical solutions with previous
results show consistent trends as reported in studies dealing with
Cartesian coordinates.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Finite difference (FDM) and finite element (FEM)
methods have been among the traditional numerical tech-
niques for simulating a wide variety of engineering and/or
scientific problems. However, the newly emerged branch of
numerical methodology, herein referred to as spectral
method (SM), has generated much interest in recent years,
particularly amongst those working in the areas of fluid
dynamics and heat/mass transfer. The increased popularity
is partly due to the successful development of an approach
that links SM to the well developed fast transforms such as
FFT (fast Fourier transform, of which Chebyshev's is a
special case), which makes the computations efficient.
According to the survey of Fletcher [1], the main weakness
of SM relative to FDM and FEM is its inflexibility to be
adaptable to irregular computational domain, but since the
appearance of spectral element models that combine the

303

generality of FEM and the accuracy of SM, this weakness
seems to be improved [2].

The basic idea of M is to express the dependent variables
in the form of a series of orthogonal functions with
unknown coefficients. The trial functions which commonly
used in spectral expansion include the Chebyshev, Legendre,
and Laguerre polynomials for problems involving non-
periodic boundary conditions, and Fourier series otherwise.
The unknown coefficients can be found by various criteria
as described by Finlayson, see Ref. [3]. In the pseudo-
spectral method (PSM), the criteria is to make the solution
error-free at the collocation points; hence, the solution
becomes exact in the limit as the number of collocation
points increases. Ku and Hatziavramidis [4] applied the
concept to a two-dimensional steady flow in a cavity driven
by a moving lid and confirmed the superiority of PSM over
FDM as far as accuracy and efficiency are concerned. To be
spectfic, PSM needs 13x13 and 25x15 nodal points,
whereas FDM requires a grid system containing 121 x 121
and 141 x 141 nodes for Reynolds numbers of 100 and 200,
respectively, in order to achieve the same resolutions [4].
In the same study but different flow configuration, Ku and
Hatziavramidis found an exceptional agreement between
their axial velocity of pipe flow with existing data [4].
There have been numerous spectral versions of various
degree of complexity, but the majority of those models are
only applicable as long as the computational domain is
bounded by simple boundaries. Interested readers are
suggested to consult Canuto ez af. [3] for a comprehensive
and up-to-date review in this area.

The objectives of this study are two-fold. First, a full spec-
tral model that employs the Chebyshev and Legendre poly-
nomials as the basis trial functions is developed and applied
to the stream-function-vorticity formulation for computing
the transient flow around a stationary sphere at low and
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intermediate Reynolds numbers. According to our literature
survey, pioneering efforts in the speciral methods for this
flow geometry can be traced back the work of Dennis and
Walker [5], where a partial spectral model that combines
FDM and SM was used. Their results, based on the
Legendre expansion along with FDM to approximate
angular and radial derivatives, respectively, demonstrated a
remarkable success in predicting the steady flow patterns for
Reynolds numbers up to 40. In a series of subsequent
papers, their hybrid spectral version was extended to flow
gencrated by a sphere under spinning motion [6], to a
transient flow field developed following an impulsive
start [7], and to a rotating boundary layer flow [81.
Recent theoretical analysis showed that the convergence
rate associated with the SM behaves in an exponential
fashion in contrast to (1/N)™ for FDM and FEM methods,
with N and m being the number of nodal points and order
of the scheme, respectively [3]. In an attempt to recover the
loss of accuracy due to FDM in early spectral schemes, this
paper proposes the use of Chebyshev collocation in the
radial direction, and such modification when used in
parallel with the Legendre expansion in the angular direc-
tion would constitute a fyil spectral scheme. Second, the
influence matrix technique is incorporated into the spectral
model to handle the lack of vorticity conditions along the
boundaries due to the overspecification of boundary condi-
tions for the stream function. Such treatment eliminates the
need of asymptotic condition for the vorticity at large
distance from the sphere.

2. GOVERNING EQUATIONS

As usual, the flow of an isothermal, Newtonian fluid at
any instance in time is described by the WNavier—Stokes
equations. These equations are found to be especially useful
when written in terms of vorticity and stream function. For
axisymmetric, incompressible flow, the equations can be
recast into the dimensionless system of equations,
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where the radial coordinate has been non-dimensionalized
by the sphere radius R, the time ¢ by R/U,, the stream func-
tion ¥ by R*U_,, and the vorticity Q2 by U_ /R. Also f is the
angular coordinate measured from the backward stagnation
point, Re is the Reynolds number based on the sphere
diameter and the droplet velocity U, and &(, }/3(, ) is the
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conventional notation of the Jacobian. The operator E*
employed in Eqgs. (1) and {2) has been defined as
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Since the stream function is defined in such a way that
the continuity equationis satisfied, we can write the radial
and tangential velocity components U/, and U,, non-
dimensionalized by U/_., as follows:
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To complete the mathematical formulation, we specify
the boundary conditions in accordance with the following
requirements: First, the flow fieid is assumed to be undis-
turbed by the presence of the sphere at distances far from the
particle and along the axis of symmetry. Second, the relative
velocity between the fluid and the sphere is zero at the
surface. These conditions, when translated to mathematical
constraints, lead to
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where r_, is the truncated radius beyond which the flow is
approximately uniform, P is the Legendre polynomial of
order 1, and p is cos 8.
The initial conditions considered in this work are given as
(0, r, 8)=£2(0, r, §) =0, (7)
which correspond to the physical situation that the flow is
impulsively started at time ¢t = 0.

3. METHOD OF SOLUTION

3.1. Spectral Representations

The present spectral method emplovs Chebyshev and
Legendre polynomials as basis functions in the radial and
angular directions respectively. As a first step prior to
adapting the Chebyshev expansion, we truncate the flow
field, originally unbounded, so that the computational
domain becomes a spherical shell whose normal distance is
further rescaled to [ —1, 1]. This projection may be accom-
plished by the use of an exponential mapping which also
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offers an adequate resolution in the vicinity of the sphere
surface where large velocity gradients exist. The coordinate
transformation we use is

et =M a2

(8)

where ¢ is an adjusting parameter that controls the
truncation of the physical domain. With the newly defined
coordinates, the flow variables are expanded as a series of
Legendre and its associated polynomials in the form

NL

(W, 2} =3 {771 (4, 4), 2,0t 1)}

ne=1

<[ 2wy, P}, ©)

H

in which NL is the number of terms to be included in the
series and P%(u) is the Legendre polynomial of the kth kind
and order n. By making the substitution of the stream
function and vorticity expansions, and after considerable
algebraic manipulation, the governing equations can be
recast to a form with no angular dependence,
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where we have made use of the orthogonality properties of
Legendre functions along with their recursive formulas.
Since these relations can be found in any standard text on
special functions, they are omitted here. Despite the fact that
the resulting equations are somewhat simpler than the
original ones, nonlinearities are still present in the convec-
tive acceleration term, given by
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where «f and B} are constants representing the integrals
of products of three associated Legendre functions.
Rottenberg et al [9] presented the theory expressing
these constants in terms of 3-J symbol, a representation
of integral of product of three Legendre functions, and
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devised algorithms to compute them numerically. Using
their notations we have
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Even though successful applications of the FDM to
Fgs. (10) and (11) have been made by Dennis and
Walker [3] in their computation of steady flow about a
spherical particle subjected to a uniform motion, the great
potential of the pseudospectral method has motivated us to
consider a full spectral model for this problem. In doing so,
the vorticity and stream function components in the above
equations are replaced by Chebyshev polynomials expan-
sions. Upon enforcement of the solution to be error-free at
the collocation points chosen to be the Gauss-Lobatto
quadrature points, point, cos(in/NT), the results are
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where G2} is a (NT+ 1) x (NT + 1) Chebyshev derivative
matrix of order y. Although a complete derivation of the
derivative matrices is not given here, detailed information
can be found elsewhere [4, 107]. In full spectral form, S,
becomes
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Equations (15) and (16) are nothing more than a system
of mixed algebraic and differential equations which can be
solved by any of several methods for initial value problems.
It is important to note that equations (15) to (17) are now
pointwise so that ¥, and 2, refer to the nth component
at the point #,.
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3.2. Temporal Discretization

Among the most commoniy used time differencing
scheme for integrating the spectral equations include
the predictor-corrector and the multi-time levels, such
as the combined second-order Adams-Bashforth and
Crank-Nicoison algorithms. Although these schemes
exhibit some desirable features in their own right, their
applicability varies widely from problem to problem due 10
numerical instability arising from the explicitness. In the
wake of such potential difficulty, we shall adopt a simple
fully implicit scheme which, besides enhancing stability,
enables a relatively longer step size,
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where At is the time increment and that the superscript *
has been used to denote the old time level. Since Eq. (18) is
nonlinear, direct solution is out of the question and iterative
treatment is necessary. For this reason, we rewrite Egs. (15)
and (18} as
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where we have denoted the iteration cycle by the superscript
m. To begin the iteration, an initial guess is supplied and
from that Egs. (20) and (19) are solved repeatedly in a
successive manner until an asymptotic limit is reached.
Criteria for determining convergence is dictated by the rule

{lQTk+l "QTk
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where {¢} is the prescribed tolerance vector. Though
Egs. (19) and (20) are linear and can be solved easily, the
absence of vorticity boundary conditions requires a special
attention. In the next section, we shall discuss a procedure
which decouples the stream function and the vorticity trans-
port equations as well as alleviates the difficulties arising in
vorticity-stream function formulation,
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3.3. Vorticity/Stream Function Decomposition

The key element of this method is to decompose the
vorticity and stream function such that all the constraints
on the stream function are satisfied simultaneously, and at
the same time vorticity boundary conditions, are resolved
[11-13]. For the present problem, we consider the decom-

position
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where the expansion functions are the solutions of the
following supplementary problems:
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The boundary conditions which go along with the

-system (23) are specified as

w{n= "1]:5.13
i=1,2,

w;(n=1)=0;,
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where d;, is the Kronecker delta. Unlike the above auxiliary

functions, the remaining ome satisfies exactly the same

equation, but with the right-hand-side replaced by that of
the original Eq. (20), i.¢.,
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along with the boundary conditions which can easily be
derived from the problem formulation. Thus,

= _1 ) = 63/25("‘5"[«
(26)
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By imposing the requirements that the stream function
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give the correct value of the derivative at the end points, we
11b2 n=1

must have
l:wﬂn=l 3l ]{}’1}
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in which the prime indicates derivative with respect to the
transformed spatial variable. It is worthwhile to point out
that the left-hand-side matrices associated with the auxiliary
problems are identical and remain unchanged throughout
the course of simulation; hence, they can be decomposed
to upper and lower matrices once and for all. Thus, the
solution at any tme level involves only backward and
forward substitutions.

(27)

4. DRAG COEFFICIENT

One parameter often of interest in particle dynamics is the
total drag force acting on the particle and in the direction
oppwosite to the drop motion. For a droplet experiencing no
interfacial mass transfer, the main contribution to the drag
force is the pressure and the interfacial shearing force. When
normalized with the inertial force (upU/Z, R?), the equation
for the net drag becomes

1 4 ot
Cp= *zj‘_lHinalCdCﬁEj_lqu=1(1_cl)mdcs (28}

where I7 is the pressure which can be obtained from the
momentum equation. Since much algebraic manipulations
are involved in deriving the equation for the pressure, detail
is omitted. Nonetheless, it can be shown, in the form of
surface pressure coefficient K({) [ 7], that

m,_,—n
Ky=—"=""—7—
© 1/2pU%,
4 2 YT
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n—l 6001 o
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where [T is the free stream pressure and

K(-l)=1——2—£‘3
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Upon integration, as indicated in (28), the term K(—1)
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drops out and the final equation for the drag coefficient
becomes

2 3T,
Comgrol(@m+ - T 6ROM). Gy

W f=G

which can easily be evaluated once the stream function
components are obtained.

5. RESULTS AND DISCUSSION

In this section, the contents will be organized into two
parts such that the accuracy as well as the adequacy of the
Chebyshev expansion can be examined in detail followed by
a discussion devoted to the main focus on flow about a
spherical particle. To fulfili the first objective we shall
investigate the convergence of a simple one-dimensional
convective—diffusive—reactive equation of a scalar C written
as

dC

4 i,C=0, ref0,1], (32)

with constant transport coefficients A, and 2,. The reason
behind the selection of this equation is the fact that analyti-
cal solution is at hand, and moreover it resembles Eq. (20)
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FIG. 1. Convergence rate of FDM, FEM, and SM.
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TABLE I
Sensitivity of Drag Coefficient on £,
Re £, =30 Eo=135 E_=45 £, =49
1 14,212 13927 13847 13.840
20 1.374 1.371 — —

with constant coefficients. In assessing the performance of

the Chebyshev collocation against the traditional FDM and

FEM methods, Eq. (32) is solved along with the boundary

conditions C(0)=0 and C(l1)=1 for several numerical

grids. The resuits for 2, = —3 and 1, =2 plotted in Fig. |

again confirm the fact that both FDM and FEM generally

require higher number of degrees of freedom than SM for a
fixed level of accuracy. As indicated by the slope of the error
curves, SM converges at a rate much faster than FDM and
FEM, which are relatively insensitive with the number of
nodes. This is true because log || Exact — Numericall| ,, ~NT
for the SM method in contrast to log{NT) for FDM
and FEM. It is rather unclear whether there is any
increase/decrease in computational cost associated with the
spectral algorithm in return for higher order of accuracy.
Howgver, a rough estimate about the magnitude of the com-
puting time can be obtained through the following con-
sideration: For example, by setting the absolute minimum
allowable error to be 2x 10723, the required number of
nodal peints are 6 for SM, 25 for FDM, and 17 for FEM.
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At this point, it is important te note that SM yields a fuil
6 x 6 matrix, while FDM and FEM produce tridiagonal
matrices with 25 and 17 rows, respectively. Depending on
the type of matrix solver involved and the available
computer speed, these numbers can directly translated to
operation counts; hence, the CPU time provided the
preprocessing times are equal for all methods.

In what follows, we shall consider the unsteady develop-
ments of the flow around a sphere following a spatially
uniform and impulsive start in an orientation from left to
right. All the results generated are based on Ar=10""
and {e}={10"73 10"}, With regards to the number of
Legendre functions and the number of collocation points,
there is no specific guideline for selecting those values
because they depend on both the Reynolds number and the
truncation radius; instead, they are determined iteratively.
Table 1 gives the results of our convergence study on the
drag coefficient as the truncation radius ¢= varies. On the
basis of the findings in Table I, it is fair to conclude that
ro. =90 for Re <20 and r,, =20 for Re = 20. Due to the
symmetry, only upper half of the flow domain is displayed
in the illustrations. '

Figure 2 provides a series of plots showing the steady-
state velocity vectors {f=15) for the case of a sphercal
particle being exposed to a moving ambience at
Re=0.01, 10, 50, and 200. Although the flow at small
Reynolds number (Fig. 2a} is of very little interest in prac-
tice, it is one of the good tests that analytical solution is
available for comparison. Mathematically speaking, when
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FIG. 2. Velocity vector at: (a) =15 for Re =001; (b) =15 for Re=10; (¢} r = 15 for Re = 50; (d) t = 15 for Re = 200.
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FIG. 3. Velocity vector at: (a) 1= 0.1 for Re = 100; (b) 1 =5 for Re = 100; (¢} t = 10 for Re = 100; {d) + = 15 for Re = 100.

the convection term is discarded from the governing equa-

tion, the vorticity transport equation reduces to the Stokes’

problem whose solution is invariant under reflection about

both axes unless a nonuniform boundary condition is

imposed. This required feature is clearly seen in Fig. 2a,
where the deflection of the vectors is indeed symmetrical
about the vertical axis 6 = n/2. Upon inspection of Fig. 2, it
is seen that Fig. 2a possess a large region, indicated by the
deflection of the velocity field, where viscous actions
dominate. This characteristic is in agreement with the con-
ventional order-of-magnitude analysis which had predicted
this layer to be theoretically infinite for truly creeping flow
(Re =0). As the Reynolds number increases (see Fig. 2b),
this layer thickness decreases and the fore-to-aft asymmetry,
a precursor to the development of the wake behind the
sphere, of the flow structure becomes more pronounced,
Further increase in the Reynolds number causes the flow in
the neighborhood of the rear stagnation point to reverse its
direction. Figure 2c ilfustrates such feature. Depending on
the strength of the main flow, the velocity in the recircula-
tion zone could be low enaugh that the fluid trapped in that
zone may be considered stagnant, as in Fig. 2¢c, where
Re = 50, and could be high as in Fig. 2d, where Re = 200.
Although the objective of this work is not to resolve the con-
troversial issue about the onset of separation, an attempt
has been made to validate the hypothesis, suggested by
some fluid dynamicists, that separation would occur around
Re =20, but it was not cbserved in our numerical experi-
ment, even though the calculation was extended up to

t =15, By comparing the flow structure and the drag coef-
ficient at 1 = 10 and 15, we believe the steady state has been
reached; therefore, such claim is inconclusive in this study.
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0.8 1

o
]
1

0.4

Normalized Wake Length

0.0 - r . I —
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Dimensionless Time
FIG. 4. Time history of wake length.
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FIG. 5. Time history of wake angle.

Figure 3 shows the temporal development of the velocity
ficld for Re= 100 depicted at r=0.1, 1, 5, 10, and 15. At
small times, the viscous effects are confined in a very small
region so that most of the flow field behaves as it is a poten-
tial flow even at + = 0.1, Fig. 3a, at which much symmetry is
still preserved. As time increases, the flow structure deforms
in an asymmetrical fashion and a wake forms gradually
{Fig. 3b). At a certain point in time, a recirculation zone is
induced and the flow separates from the body of the sphere.
Within the eddy, the fluid encounters an adverse pressure
gradient which causes the flow to reverse its direction from
the main stream and forces the entrained fluid to circulate in
a clockwise manner (see Fig. 3¢ and 3d). Once an eddy is
formed, its volume expands very rapidly at first and at
slower rates as the flow moves toward the steady state. For

TABLE II
Comparison of Wake Length and Separation Angle

Wake length Wake angle
Re Present Ref, [14] Present Ref. [14]
50 043 0.42 139.0° 138.5°
100 0.85 0.36 129.5° 126.5°
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TABLE I1I

Comparison of Drag Coeflicient

Re Present Ref. [5] Ref. [15, 16]
0.1 12224 122.10 1223
1 13.84 13,72 13.78
5 3.627 3,605 3.640
10 2219 2212 2225
20 1.374 1.365 1.405
40 0.507 0.504 —
S0 0.803 — 0.860
100 0.548 — —
200 0.403 — —
300 0.34% — —

instance, after about 1.5 units of dimensionless time since its
inception, the wake length, defined as the distance from the
rear stagnation point to the tip of the wake, is nearly one-
half of the radius; and with four additional times units, the
distance is almost double. If the Reynolds number is not
high enough for the eddy to be detached from the sphere
surface, the volume of the eddy widens and lengthens in the
streamwise direction continually as time progresses and
appears to attain a maximum value at steady state. This is
substantiated by the data in Figures 4 and 5. Also evidenced
from these figures is that the volume of the eddy increases
significantly with Re.

2

.2 ————y — T r T
¢.0 1.0 2.0 3.0

Angle

FIG. 6. Pressure coefficient along the sphere surface for Re = 100.
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Although the above findings indicate a promising sign
about the proper performance of the proposed numerical
model, they need to be assessed quantitatively with existing
solutions. As a first step in validating our numerical results,
the time evolutions of the wake length and the angle of
separation, measured from the front stagnation point, in
Fig. 4 and 5 are extrapolated and compared along with
those coliected by Clift ez al [14] from a number of
sources. Table IT is a summary Of our comparison where the
magnitude of the error is within 2%. The incentive of this
comparison on the wake length and separation angle is the
climentation of possible sources of error which may be
accumulated during the integration of the pressure and the
skin friction along the surface of the sphere.

Although it is believed that assessing the wake length and
angle would give a direct indication of how well the numeri-
cal scheme performs locally, it is also of important to com-
pare the drag coefficient. Table II1 tabulates the present
predictions for several values of Reynolds numbers, ranging
from 0.1 to 300, along with the results of Dennis and
Walker [5] and of Oliver and Chung [ 15, 16]. It appears
that the combined Galerkin/collocation spectral method is
capable of predicting the drag force accurately. In comput-
ing these late time drag coefficients, the solution is allowed
to advance in time until the change in the drag coefficient is
less than 1073,

It is noticeable {from the above table that neither Dennis

Vorticity at the surface

-30 . 1 —_— i
0.0 1.¢ 2.0 3.0

Angle
FI1G. 7. Vorticity distribution along the sphere surface for Re = 100.
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and Walker [5] nor Oliver and Chung [15, 16] provided
the drag coefficient for Re =100, 200, and 300. To verify
these values, we compared them against those computed
from the correlation of Schiller and WNauman [17]
documented in the book by Clift er al. [14]. According to
Clift and his associates, the range of deviation of the Schiller
and Nauman empirical equation is from +3 to —4%, and
seems to be the best, for Re < 800, among the correlations
they documented. The values calculated from this correla-
tion were 0.546, 0.403, and 0.342, which agree exceptionally
well with our results,

As far as the transient nature of the flow is concerned,
much of the information from the work of Dennis and
Walker [77 is relevant for comparison with ours. However,
because their data were presented in graphical form, it is
difficult to perform a numerical assessment. For qualitative
comparison purposes, the time response of the surface
pressure and vorticity for Re =100, and of the drag coef-
ficient, are presented in Fig. 6, 7, and 8, respectively. These
curves are comparable to those of Dennis and Walker [7]
both qualitatively and quantitatively, except at early times
where our predictions are somewhat higher, especially near
the front stagnation point. Another good test is the com-
parison of the separation time. By extrapolating the wake
lengths, the separation time for Re = 50 and 100 is estimated
to be about 1.5 and 0.8, respectively, and these are in the
same bulk part of Dennis and Walker calculations [77].
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FIG. 8. Time history of drag coefficient.
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Despite the lack of the available transient data, we are confi-
dent about the present numerical model. Such conclusion
comes {rom good agreement of local and global data as wel
as limited transient data.

6. CONCLUDING REMARKS

The proposed Chebyshev-Legendre spectral model has
been tested for the flow associated with a spherical particle.
The following conclusions are drawn:

1. The present SM model is especially well suited for
axisymmetric flow associated with spherical bodies. It is
casily be extended to two-phase flow problems in which the
continuous and the dispersed media may be either gas or
liquid. These studies are currently underway.,

2. Accuracy associated with the proposed method is
likely an order higher than FDM and FEM. However, the
computational cost is probably higher because the matrices
are unbanded. Nonetheless, the computing time does not
scem (0 be a concern because of the recent advances in
computer technology, both in hardware and software.
Moreover, accuracy 15 sometimes more important than
computing power in many problems such as transition and
turbulent flows.

3. The use of the Galerkin procedure is very appropriate
to the type of flows undertaken in this study because it
reduces the dimension of the problem by ome. Such a
technique also weakens the effects of aliasing errors which
arc known to exist in pseudospectral methods.

NGUYEN AND CHUNG
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